Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Sodium benzenesulfonothioate

Alexander Rothenberger* and Robert Langer

Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstrasse 15, 76131 Karlsruhe, Germany, and Institut für Nanotechnologie, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe, Germany Correspondence e-mail: ar252@chemie.uni-karlsruhe.de

Received 8 November 2007; accepted 14 November 2007

Key indicators: single-crystal X-ray study; T = 100 K, P = 0.0 kPa; mean σ (Na–O) = 0.002 Å; disorder in main residue; R factor = 0.032; wR factor = 0.079; data-toparameter ratio = 15.3.

The title compound, $Na^+ \cdot C_6 H_5 O_2 S_2^-$, at 100 (2) K has orthorhombic (Cmca) symmetry. The compound has a network structure. It is of interest with respect to inclusion phenomena and structure-activity relationships. The Na atoms are chelated by two different benzenesulfonothioate anions via α -S and O atoms. Additional coordination by O atoms of two other benzenesulfonothioate anions results in coordination number 6 for each Na atom in the extended two-dimensional polymeric structure. The structure exhibits disorder of the anion in the two-dimensional arrangement. The phenyl group is disordered equally over two positions.

Related literature

For related literature, see: El-khateeb et al. (2006).

Experimental

Crystal data

$Na^{+} \cdot C_{6}H_{5}O_{2}S_{2}^{-}$
$M_r = 196.21$
Orthorhombic, Cmca
a = 9.5579 (10) Å
b = 7.0127 (8) Å
c = 24.231 (3) Å

Data collection

Stoe IPDS 2 diffractometer Absorption correction: numerical (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.829, T_{\max} = 0.881$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ S = 1.051053 reflections

V = 1624.1 (3) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.65 \text{ mm}^{-1}$ T = 100 (2) K $0.30 \times 0.30 \times 0.20$ mm

6658 measured reflections 1053 independent reflections 874 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.054$

69 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.42$ e Å⁻³

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

The authors thank the Forschungszentrum Karlsruhe and Professor Dieter Fenske for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2202).

References

El-khateeb, M., Görls, H. & Weigend, W. (2006). J. Organomet. Chem. 691, 5804-5808.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, m3093 [doi:10.1107/S1600536807059065]

Sodium benzenesulfonothioate

A. Rothenberger and R. Langer

Comment

The stucture of the title compound, (I), is shown below (Fig. 1). Dimensions are available in the archived CIF. I forms a two-dimensional polymeric arrangement in the solid state and may serve in future as a polydentate ligand with hard and soft donor centres.

For related literature, see El-khateeb et al., 2006.

Experimental

The compound was prepared by aerobic oxidation of phenylthiol and subsequent treatment with sodium sulfide in THF (yield 10%).

Refinement

All H atoms were positioned in calculated positions and refined using a riding model, with C—H = 0.95 Å, and with $U_{iso}(H) = 1.2 \text{Ueq}(C)$.

Figures

Fig. 1. Structure of the title compound in the solid state (displacement ellipsoids are at the 50% probability level). Connections to neighbouring sodium atoms are indicated by dashed bonds.

Fig. 2. Packing of the title compound in the solid state (without phenyl groups).

Sodium benzenesulfonothioate

Crystal data

 $Na^+ C_6H_5O_2S_2^ M_r = 196.21$ Orthorhombic, Cmca Hall symbol: -c 2ac 2 a = 9.5579 (10) Å *b* = 7.0127 (8) Å c = 24.231 (3) Å V = 1624.1 (3) Å³ Z = 8 $F_{000} = 800$

Data collection

Stoe IPDS 2 diffractometer	1053 independent reflection
Radiation source: fine-focus sealed tube	874 reflections with $I > 2\sigma$
Monochromator: graphite	$R_{\rm int} = 0.054$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{max} = 28.3^{\circ}$
T = 100(2) K	$\theta_{\min} = 1.7^{\circ}$
rotation scans	$h = -12 \rightarrow 12$
Absorption correction: numerical (X-RED32; Stoe & Cie, 2002)	$k = -9 \rightarrow 9$
$T_{\min} = 0.829, \ T_{\max} = 0.881$	$l = -32 \rightarrow 32$
6658 measured reflections	

Refinement

Refinement on F^2

Least-squares	matrix:	full

 $R[F^2 > 2\sigma(F^2)] = 0.032$

 $wR(F^2) = 0.079$

S = 1.05

1053 reflections

69 parameters

Primary atom site location: structure-invariant direct methods

 $D_{\rm x} = 1.605 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6649 reflections $\theta = 3.3 - 56.5^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 100 (2) KCell measurement pressure: 100 kPa Block, colourless $0.30 \times 0.30 \times 0.20 \text{ mm}$

ns (I)

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0377P)^2 + 1.7243P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

Special details

Experimental. The phenyl groups are disordered over two positions (50:50). This disorder is static and a consequence of the symmetry operations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
S1	0.5000	0.24418 (9)	0.43057 (3)	0.01877 (16)	
S2	0.5000	-0.02166 (10)	0.40674 (3)	0.02647 (18)	
Na1	0.28026 (10)	0.0000	0.5000	0.0222 (2)	
01	0.37188 (13)	0.2896 (2)	0.46085 (5)	0.0245 (3)	
C1	0.5122 (3)	0.3934 (3)	0.37218 (8)	0.0208 (6)	0.50
C2	0.4003 (2)	0.5052 (4)	0.35502 (10)	0.0236 (7)	0.50
H2	0.3147	0.5024	0.3749	0.028*	0.50
C3	0.4137 (2)	0.6210 (3)	0.30877 (11)	0.0276 (8)	0.50
H3	0.3372	0.6975	0.2970	0.033*	0.50
C4	0.5390 (3)	0.6251 (3)	0.27968 (9)	0.0297 (10)	0.50
H4	0.5482	0.7043	0.2481	0.036*	0.50
C5	0.6509 (2)	0.5133 (4)	0.29684 (10)	0.0306 (9)	0.50
H5	0.7366	0.5160	0.2770	0.037*	0.50
C6	0.6375 (2)	0.3974 (3)	0.34309 (10)	0.0251 (8)	0.50
H6	0.7140	0.3210	0.3548	0.030*	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0143 (3)	0.0198 (3)	0.0222 (3)	0.000	0.000	-0.0004 (2)
S2	0.0264 (3)	0.0217 (3)	0.0313 (4)	0.000	0.000	-0.0030(3)
Na1	0.0168 (5)	0.0210 (5)	0.0288 (5)	0.000	0.000	0.0000 (4)
O1	0.0189 (6)	0.0270 (7)	0.0277 (7)	0.0020 (5)	0.0052 (5)	-0.0020 (5)
C1	0.0183 (16)	0.0218 (12)	0.0224 (12)	0.000 (2)	0.001 (2)	-0.0009 (10)
C2	0.0222 (16)	0.0253 (18)	0.0232 (17)	0.0019 (15)	-0.0015 (14)	-0.0040 (15)
C3	0.031 (2)	0.0244 (18)	0.027 (2)	-0.0005 (17)	-0.0087 (17)	0.0003 (16)
C4	0.039 (3)	0.0242 (17)	0.0262 (18)	-0.0063 (14)	-0.0034 (15)	0.0057 (15)
C5	0.029 (2)	0.033 (2)	0.030 (2)	-0.0069 (18)	0.0044 (16)	0.0017 (18)
C6	0.0201 (17)	0.029 (2)	0.0257 (19)	-0.0029 (16)	0.0008 (15)	0.0015 (16)

Geometric parameters (Å, °)

S1—O1	1.4627 (13)	Nal—Nal ^{iv}	3.5537 (5)
S1—O1 ⁱ	1.4627 (13)	Nal—Nal ^{vi}	3.5537 (5)
S1—C1 ⁱ	1.7636 (18)	Na1—Na1 ⁱⁱ	4.201 (2)
S1—C1	1.7636 (18)	O1—Na1 ^{iv}	2.2784 (14)
S1—S2	1.9517 (10)	C1—C2	1.3900
S1—Na1	3.1896 (8)	C1—C6	1.3900
S1—Na1 ⁱⁱ	3.1897 (8)	C2—C3	1.3900
S2—Na1	3.0889 (9)	С2—Н2	0.9500
S2—Na1 ⁱⁱ	3.0889 (9)	C3—C4	1.3900
Na1—O1 ⁱⁱⁱ	2.2784 (14)	С3—Н3	0.9500
Na1—O1 ^{iv}	2.2784 (14)	C4—C5	1.3900
Na1—O1	2.4065 (14)	C4—H4	0.9500
Na1—O1 ^v	2.4066 (14)	C5—C6	1.3900
Na1—S2 ⁱⁱ	3.0889 (9)	С5—Н5	0.9500
Na1—S1 ⁱⁱ	3.1896 (8)	С6—Н6	0.9500
01—S1—O1 ⁱ	113.68 (11)	S2—Na1—S1	36.176 (19)
01—S1—C1 ⁱ	102.58 (11)	S1 ⁱⁱ —Na1—S1	97.63 (3)
$O1^{i}$ — $S1$ — $C1^{i}$	109.19 (11)	O1 ⁱⁱⁱ —Na1—Na1 ^{iv}	122.35 (5)
O1—S1—C1	109.19 (10)	O1 ^{iv} —Na1—Na1 ^{iv}	42.03 (4)
01 ⁱ —S1—C1	102.58 (11)	O1—Na1—Na1 ^{iv}	39.34 (3)
C1 ⁱ —S1—C1	7.60 (18)	O1 ^v —Na1—Na1 ^{iv}	153.11 (4)
O1—S1—S2	110.89 (6)	S2 ⁱⁱ —Na1—Na1 ^{iv}	93.56 (2)
01 ⁱ —S1—S2	110.89 (6)	S2—Na1—Na1 ^{iv}	99.16 (2)
C1 ⁱ —S1—S2	109.23 (9)	S1 ⁱⁱ —Na1—Na1 ^{iv}	129.56 (3)
C1—S1—S2	109.23 (9)	S1—Na1—Na1 ^{iv}	65.01 (2)
O1—S1—Na1	45.66 (6)	O1 ⁱⁱⁱ —Na1—Na1 ^{vi}	42.03 (4)
O1 ⁱ —S1—Na1	113.80 (6)	O1 ^{iv} —Na1—Na1 ^{vi}	122.35 (5)
C1 ⁱ —S1—Na1	134.27 (9)	O1—Na1—Na1 ^{vi}	153.11 (4)
C1—S1—Na1	141.75 (9)	O1 ^v —Na1—Na1 ^{vi}	39.34 (3)
S2—S1—Na1	69.10 (2)	S2 ⁱⁱ —Na1—Na1 ^{vi}	99.16 (2)
O1—S1—Na1 ⁱⁱ	113.80 (6)	S2—Na1—Na1 ^{vi}	93.56 (2)
O1 ⁱ —S1—Na1 ⁱⁱ	45.66 (6)	S1 ⁱⁱ —Na1—Na1 ^{vi}	65.01 (2)
C1 ⁱ —S1—Na1 ⁱⁱ	141.75 (9)	S1—Na1—Na1 ^{vi}	129.56 (3)
C1—S1—Na1 ⁱⁱ	134.27 (9)	Na1 ^{iv} —Na1—Na1 ^{vi}	161.27 (6)
S2—S1—Na1 ⁱⁱ	69.10 (2)	O1 ⁱⁱⁱ —Na1—Na1 ⁱⁱ	129.66 (4)
Na1—S1—Na1 ⁱⁱ	82.37 (3)	O1 ^{iv} —Na1—Na1 ⁱⁱ	129.66 (4)
S1—S2—Na1	74.72 (2)	O1—Na1—Na1 ⁱⁱ	68.66 (4)
S1—S2—Na1 ⁱⁱ	74.72 (2)	O1 ^v —Na1—Na1 ⁱⁱ	68.66 (4)
Na1—S2—Na1 ⁱⁱ	85.68 (3)	S2 ⁱⁱ —Na1—Na1 ⁱⁱ	47.160 (17)

O1 ⁱⁱⁱ —Na1—O1 ^{iv}	100.68 (8)	S2—Na1—Na1 ⁱⁱ	47.161 (17)
O1 ⁱⁱⁱ —Na1—O1	127.93 (6)	S1 ⁱⁱ —Na1—Na1 ⁱⁱ	48.816 (15)
O1 ^{iv} —Na1—O1	81.37 (5)	S1—Na1—Na1 ⁱⁱ	48.817 (15)
O1 ⁱⁱⁱ —Na1—O1 ^v	81.37 (5)	Na1 ^{iv} —Na1—Na1 ⁱⁱ	99.37 (3)
O1 ^{iv} —Na1—O1 ^v	127.92 (6)	Na1 ^{vi} —Na1—Na1 ⁱⁱ	99.37 (3)
O1—Na1—O1 ^v	137.32 (8)	S1—O1—Na1 ^{iv}	152.16 (9)
O1 ⁱⁱⁱ —Na1—S2 ⁱⁱ	140.39 (4)	S1—O1—Na1	108.58 (8)
O1 ^{iv} —Na1—S2 ⁱⁱ	95.60 (4)	Na1 ^{iv} —O1—Na1	98.63 (5)
O1—Na1—S2 ⁱⁱ	89.97 (4)	C2—C1—C6	120.0
O1 ^v —Na1—S2 ⁱⁱ	60.38 (4)	C2—C1—S1	121.58 (15)
O1 ⁱⁱⁱ —Na1—S2	95.60 (4)	C6—C1—S1	118.42 (15)
O1 ^{iv} —Na1—S2	140.39 (4)	C1—C2—C3	120.0
O1—Na1—S2	60.38 (4)	C1—C2—H2	120.0
O1 ^v —Na1—S2	89.97 (4)	C3—C2—H2	120.0
S2 ⁱⁱ —Na1—S2	94.32 (3)	C4—C3—C2	120.0
O1 ⁱⁱⁱ —Na1—S1 ⁱⁱ	106.99 (4)	С4—С3—Н3	120.0
O1 ^{iv} —Na1—S1 ⁱⁱ	123.25 (4)	С2—С3—Н3	120.0
O1—Na1—S1 ⁱⁱ	114.92 (5)	C3—C4—C5	120.0
O1 ^v —Na1—S1 ⁱⁱ	25.76 (3)	C3—C4—H4	120.0
S2 ⁱⁱ —Na1—S1 ⁱⁱ	36.175 (19)	C5—C4—H4	120.0
S2—Na1—S1 ⁱⁱ	84.94 (3)	C4—C5—C6	120.0
O1 ⁱⁱⁱ —Na1—S1	123.25 (4)	C4—C5—H5	120.0
O1 ^{iv} —Na1—S1	106.99 (4)	С6—С5—Н5	120.0
O1—Na1—S1	25.76 (3)	C5—C6—C1	120.0
O1 ^v —Na1—S1	114.92 (5)	С5—С6—Н6	120.0
S2 ⁱⁱ —Na1—S1	84.94 (3)	C1—C6—H6	120.0
O1—S1—S2—Na1	-18.83 (6)	C1 ⁱ —S1—Na1—S1 ⁱⁱ	167.38 (13)
O1 ⁱ —S1—S2—Na1	108.46 (7)	C1—S1—Na1—S1 ⁱⁱ	165.36 (14)
C1 ⁱ —S1—S2—Na1	-131.16 (10)	S2—S1—Na1—S1 ⁱⁱ	70.48 (2)
C1—S1—S2—Na1	-139.21 (9)	O1—S1—Na1—Na1 ^{iv}	-4.18 (7)
Na1 ⁱⁱ —S1—S2—Na1	89.63 (3)	O1 ⁱ —S1—Na1—Na1 ^{iv}	96.36 (7)
O1—S1—S2—Na1 ⁱⁱ	-108.46 (7)	Cl ⁱ —Sl—Nal—Nal ^{iv}	-62.35 (13)
O1 ⁱ —S1—S2—Na1 ⁱⁱ	18.82 (6)	C1—S1—Na1—Na1 ^{iv}	-64.36 (14)
C1 ⁱ —S1—S2—Na1 ⁱⁱ	139.21 (9)	S2—S1—Na1—Na1 ^{iv}	-159.24 (3)
C1-S1-S2-Na1 ⁱⁱ	131.16 (10)	Na1 ⁱⁱ —S1—Na1—Na1 ^{iv}	130.28 (2)
Na1—S1—S2—Na1 ⁱⁱ	-89.63 (3)	O1—S1—Na1—Na1 ^{vi}	161.79 (9)
S1—S2—Na1—O1 ⁱⁱⁱ	143.07 (4)	O1 ⁱ —S1—Na1—Na1 ^{vi}	-97.67 (7)
Na1 ⁱⁱ —S2—Na1—O1 ⁱⁱⁱ	-141.60 (4)	C1 ⁱ —S1—Na1—Na1 ^{vi}	103.62 (13)
S1—S2—Na1—O1 ^{iv}	28.83 (7)	C1—S1—Na1—Na1 ^{vi}	101.61 (14)
Na1 ⁱⁱ —S2—Na1—O1 ^{iv}	104.16 (7)	S2—S1—Na1—Na1 ^{vi}	6.73 (4)
S1—S2—Na1—O1	12.17 (4)	Na1 ⁱⁱ —S1—Na1—Na1 ^{vi}	-63.75 (4)

supplementary materials

Na1 ⁱⁱ —S2—Na1—O1	87.50 (4)	O1—S1—Na1—Na1 ⁱⁱ	-134.45 (8)
S1—S2—Na1—O1 ^v	-135.61 (4)	O1 ⁱ —S1—Na1—Na1 ⁱⁱ	-33.92 (6)
Na1 ⁱⁱ —S2—Na1—O1 ^v	-60.28 (4)	C1 ⁱ —S1—Na1—Na1 ⁱⁱ	167.38 (13)
S1—S2—Na1—S2 ⁱⁱ	-75.331 (19)	C1—S1—Na1—Na1 ⁱⁱ	165.36 (14)
S1—S2—Na1—S1 ⁱⁱ	-110.31 (2)	S2—S1—Na1—Na1 ⁱⁱ	70.48 (2)
Na1 ⁱⁱ —S2—Na1—S1 ⁱⁱ	-34.977 (17)	O1 ⁱ —S1—O1—Na1 ^{iv}	66.5 (2)
Na1 ⁱⁱ —S2—Na1—S1	75.331 (19)	C1 ⁱ —S1—O1—Na1 ^{iv}	-51.3 (2)
S1—S2—Na1—Na1 ^{iv}	18.99 (3)	C1—S1—O1—Na1 ^{iv}	-47.4 (2)
Na1 ⁱⁱ —S2—Na1—Na1 ^{iv}	94.32 (3)	S2—S1—O1—Na1 ^{iv}	-167.80 (15)
S1—S2—Na1—Na1 ^{vi}	-174.81 (3)	Na1—S1—O1—Na1 ^{iv}	167.3 (2)
Na1 ⁱⁱ —S2—Na1—Na1 ^{vi}	-99.48 (3)	Na1 ⁱⁱ —S1—O1—Na1 ^{iv}	116.62 (17)
S1—S2—Na1—Na1 ⁱⁱ	-75.331 (19)	O1 ⁱ —S1—O1—Na1	-100.80 (10)
O1—S1—Na1—O1 ⁱⁱⁱ	109.42 (8)	C1 ⁱ —S1—O1—Na1	141.44 (10)
O1 ⁱ —S1—Na1—O1 ⁱⁱⁱ	-150.05 (10)	C1—S1—O1—Na1	145.33 (11)
C1 ⁱ —S1—Na1—O1 ⁱⁱⁱ	51.25 (14)	S2—S1—O1—Na1	24.93 (8)
C1—S1—Na1—O1 ⁱⁱⁱ	49.23 (15)	Na1 ⁱⁱ —S1—O1—Na1	-50.65 (8)
S2—S1—Na1—O1 ⁱⁱⁱ	-45.65 (5)	O1 ⁱⁱⁱ —Na1—O1—S1	-89.13 (7)
Na1 ⁱⁱ —S1—Na1—O1 ⁱⁱⁱ	-116.13 (5)	O1 ^{iv} —Na1—O1—S1	174.02 (11)
O1—S1—Na1—O1 ^{iv}	-6.18 (11)	O1 ^v —Na1—O1—S1	35.23 (6)
O1 ⁱ —S1—Na1—O1 ^{iv}	94.36 (6)	S2 ⁱⁱ —Na1—O1—S1	78.36 (7)
C1 ⁱ —S1—Na1—O1 ^{iv}	-64.35 (13)	S2—Na1—O1—S1	-16.63 (5)
C1—S1—Na1—O1 ^{iv}	-66.37 (15)	S1 ⁱⁱ —Na1—O1—S1	51.27 (8)
S2—S1—Na1—O1 ^{iv}	-161.25 (4)	Na1 ^{iv} —Na1—O1—S1	174.02 (11)
Na1 ⁱⁱ —S1—Na1—O1 ^{iv}	128.27 (4)	Na1 ^{vi} —Na1—O1—S1	-32.18 (16)
O1 ⁱ —S1—Na1—O1	100.54 (13)	Na1 ⁱⁱ —Na1—O1—S1	35.23 (6)
C1 ⁱ —S1—Na1—O1	-58.17 (14)	O1 ⁱⁱⁱ —Na1—O1—Na1 ^{iv}	96.85 (9)
C1—S1—Na1—O1	-60.19 (16)	O1 ^v —Na1—O1—Na1 ^{iv}	-138.80 (5)
S2—S1—Na1—O1	-155.07 (8)	S2 ⁱⁱ —Na1—O1—Na1 ^{iv}	-95.67 (4)
Na1 ⁱⁱ —S1—Na1—O1	134.45 (8)	S2—Na1—O1—Na1 ^{iv}	169.34 (6)
$O1$ — $S1$ — $Na1$ — $O1^{v}$	-154.46 (6)	S1 ⁱⁱ —Na1—O1—Na1 ^{iv}	-122.75 (4)
O1 ⁱ —S1—Na1—O1 ^v	-53.92 (9)	S1—Na1—O1—Na1 ^{iv}	-174.02 (11)
C1 ⁱ —S1—Na1—O1 ^v	147.37 (13)	Na1 ^{vi} —Na1—O1—Na1 ^{iv}	153.79 (12)
C1—S1—Na1—O1 ^v	145.35 (14)	Na1 ⁱⁱ —Na1—O1—Na1 ^{iv}	-138.80 (5)
S2—S1—Na1—O1 ^v	50.48 (4)	01—S1—C1—C2	-11.20 (17)
Na1 ⁱⁱ —S1—Na1—O1 ^v	-20.01 (4)	$O1^{i}$ — $S1$ — $C1$ — $C2$	-132.10 (14)
O1—S1—Na1—S2 ⁱⁱ	-100.50 (8)	$C1^{i}$ — $S1$ — $C1$ — $C2$	18.88 (14)
O1 ⁱ —S1—Na1—S2 ⁱⁱ	0.04 (7)	S2—S1—C1—C2	110.21 (13)
C1 ⁱ —S1—Na1—S2 ⁱⁱ	-158.67 (13)	Na1—S1—C1—C2	29.9 (2)
C1—S1—Na1—S2 ⁱⁱ	-160.69 (14)	Na1 ⁱⁱ —S1—C1—C2	-170.60 (10)
S2—S1—Na1—S2 ⁱⁱ	104.44 (3)	01—S1—C1—C6	168.83 (12)
Na1 ⁱⁱ —S1—Na1—S2 ⁱⁱ	33.953 (17)	01 ⁱ —S1—C1—C6	47.94 (15)

O1—S1—Na1—S2	155.07 (8)	C1 ⁱ —S1—C1—C6	-161.08 (13)
Ol ⁱ —S1—Na1—S2	-104.40 (7)	S2—S1—C1—C6	-69.76 (14)
C1 ⁱ —S1—Na1—S2	96.90 (13)	Na1—S1—C1—C6	-150.09 (11)
C1—S1—Na1—S2	94.88 (14)	Na1 ⁱⁱ —S1—C1—C6	9.4 (2)
Na1 ⁱⁱ —S1—Na1—S2	-70.48 (2)	S1—C1—C2—C3	-180.0 (2)
O1—S1—Na1—S1 ⁱⁱ	-134.45 (8)	S1—C1—C6—C5	179.97 (19)
O1 ⁱ —S1—Na1—S1 ⁱⁱ	-33.92 (6)		

Symmetry codes: (i) -x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+1/2, y-1/2, z; (iv) -x+1/2, -y+1/2, -z+1; (v) x, -y, -z+1; (vi) -x+1/2, -y-1/2, -z+1.

Fig. 1

